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Abstract

An approach is presented for monitoring the effects of neoadjuvant chemotherapy in patients with Ewing’s sarcoma using dynamic
contrast-enhanced perfusion magnetic resonance (MR) images. For that purpose, we modify the three-compartment pharmacokinetic
permeability model introduced by Tofts et al. (Magn Reson Med 1991;17:357–67) to a two-compartment model. Perfusion MR images
acquired using an intravenous injection with Gadolinium (Gd-DTPA) are analyzed with this two-compartment pharmacokinetic model as
well as the with an extended pharmacokinetic model that includes the (local) arrival timet0 of the tracer as an endogenous (estimated)
parameter. For each MR section, a wash-in parameter associated with each voxel is estimated twice by fitting each of the two
pharmacokinetic models to the dynamic MR signal. A comparison of the two wash-in parametric images (global versus local arrival time)
with matched histologic macroslices demonstrates a good correspondence between areas with viable remnant tumor and a high wash-in rate.
This can be explained by the high number and permeability of the (leaking) capillaries in viable tumor tissue. The novel pharmacokinetic
model based on a local arrival time of tracer results in the best fit of the wash-in rate, the most important factor discerning viable from
nonviable tumor components. However, parameter estimates obtained with this model are also more sensitive to noise in the MR signal. The
novel pharmacokinetic model resulted in a sensitivity between 0.22 and 0.60 and a specificity between 0.61 and 1. The model based on a
global arrival time gave sensitivities between 0.33 and 0.77 and specificities between 0.58 and 0.99. Both statistics are computed as the
fraction of correctly labeled voxels (viable or nonviable tumor) within a specified ROI, which delineates the tumor. We conclude that the
added value of estimating the local arrival time of tracer first manifests itself for moderate noise levels in the MR signal. The novel
pharmacokinetic model should moreover be preferred when pharmacokinetic modeling is applied on the average signal intensity within a
ROI, where noise has less effect on the fitted parameters. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

The diagnosis of bone sarcoma traditionally has been
based on an integrated approach using clinical data, con-
ventional radiography [1], and histopathology. Contrast-
enhanced magnetic resonance imaging (MRI) has proven to
be the method of choice for a proper estimation of the extent

of bone tumors [2–4]. Contrast-enhanced MR imaging,
however, does not allow an optimal estimation of the re-
sponse to preoperative chemotherapy in the case of osteo- or
Ewing’s sarcoma [5], as this technique is unable to visualize
small, scattered foci of residual tumor [6]. Dynamic con-
trast-enhanced MR imaging using an intravenous contrast
tracer is a sensitive indicator for the presence of remnants of
viable tumor in patients with high-grade osteosarcoma and
Ewing’s sarcoma sarcoma [5]. A dynamic MR sequence can
be analyzed by drawing two Regions-of-Interest (ROIs),
one around the tumor and another around the feeding artery.
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The average signal can be computed per ROI and rendered
as a signal-enhancement curve. A study based on such a
technique indicated that both the difference between the
slopes of the two signal-enhancement curves and the differ-
ence between the arrival times of the tracer (in the artery
and the lesion) correlated well with the malignant potential
of the tumor as indicated by its histologic classification [3].
This ROI-based technique results in a high signal-to-noise
ratio but at a coarse spatial resolution. The technique shows
a high correlation with histology if the perfusion pattern of
the tumor is homogenous, an assumption which is in most
cases not fulfilled by malignant (postchemotherapy) bone
tumors. Subtraction of dynamic contrast-enhanced MR im-
ages—MR-images before and after the arrival of contrast
tracer—results in a high spatial resolution but is limited in
the characterization of a continuous, ongoing process (per-
fusion) by solely one instantaneous measurement.

A local assessment of different parts of the lesion can be
obtained by fitting a pharmacokinetic model to each voxel
in the dynamic MR images. A pharmacokinetic model is a
differential equation that specifies changes in concentration
of a substance as a function of time in one or more com-
partments. In our application, it models the concentration of
contrast tracer in the blood plasma and the extracellular
compartments as a function of time.

In this article, we derive a two-compartment pharmaco-
kinetic model based on the model introduced by Tofts et al.
[7]. This two-compartment model is further modified by
including the local arrival time of tracer as a fitted param-
eter. For each voxel, a two-compartment pharmacokinetic
model is fitted such that the model parameters characterize
salient features of the dynamic MR signal. Corresponding to
each model parameter, a so-called parametric image is com-
posed. The parametric images indicate the local wash-in
(tracer uptake), the local wash-out (tracer elimination), the
local arrival time of the blood (t0) and the local maximal
enhancement (a) caused by the uptake of contrast tracer in
the tumor. We have correlated these parametric images with
the occurrence of residual viable tumor tissue in a matched
histologic macro-section.

2. Materials and methods

2.1. Subjects

In our study, eight consecutive patients with Ewing’s
sarcoma who underwent neoadjuvant chemotherapy were
selected. For each patient, a pathologic specimen was avail-
able after surgery which could be matched with the results
from the preoperative MR examination. Table 1 lists the
gender, age, location of tumor and response to chemother-
apy for each patient. The patients, five males and three
females, ranging in age from 3 to 21 years (mean5 15
years) underwent neoadjuvant chemotherapy according to
the protocols of the Cooperative Ewing Sarcoma Study [8].

The response to chemotherapy was assessed by two skilled
pathologists according to the classification of histologic
grades of tumor regression [9]. Four patients responded very
well to chemotherapy (Class III/IIIa), three patients showed
a moderate response (Class II) and one patient had a poor
response (Class I).

2.2. MR imaging

After completion of preoperative chemotherapy, the MR
examination was performed on a 0.5 T super-conductive
Gyroscan (Philips, Best, the Netherlands) using a surface
coil. Depending on the size of the tumor, one, two or three
sections were selected for T1-weighted dynamic contrast-
enhanced imaging using a magnetization prepared imaging
gradient recalled echo technique. The MR images were
acquired with a repetition time (TR) of 12 ms (independent
of the number of sections 1–3), an echo time (TE) of 5.7 ms,
and a prepulse delay time of 741 ms. The flip angle was 30
degrees. The field-of-view varied per patient depending on
the size of the tumor (200–450 mm). Images were acquired
with a matrix size of 2563 256 voxels. The slice thickness
was 8 mm and the slice gap 12 mm. An intravenous bolus
injection of the contrast tracer Gd-DTPA (Magnevistt) was
given followed by a saline flush. For each MR section, 47 to
60 dynamic images were acquired with a temporal resolu-
tion of 3.3 s.

2.3. Pharmacokinetic analysis

A two-compartment model was derived and used to
differentiate viable from non-viable tumor, see Fig. 1. The
presence of contrast tracer in heavily vascularized tissue
causes local magnetic field fluctuations which result in re-
duced relaxation times T1 and T2 [10]. Assuming that the
transient reduction of the T2 relaxation time can be ne-
glected, the longitudinal relaxation is (in steady state) lin-

Table 1
Study subjects

Index Gender Age Location Response
Average size,
viable tumor

1 Male 14 Femur I 23 voxels
2 Male 14 Fibula II 8 voxels
3 Female 21 Femur II 16 voxels
4 Female 19 Fibula II 26 voxels
5 Male 15 Tibia III 6 voxels
6 Male 19 Femur III 7 voxels
7 Female 18 Tibia IIIa 0 voxels
8 Male 3 Femur IIIa 0 voxels

Five males and three females, with Ewing’s sarcoma were included in
our study. The tumors were either located in the femur, fibula, or tibia. The
response to chemotherapy was scored by two pathologists into one of four
categories (see text). The average size of the islands with viable tumor was
computed from the (registered) mask obtained from the histologic macro-
slice.
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early related to the tracer concentrationC in tissue (tumor)
via the bulk longitudinal relaxation time of blood [11]

1

T1~c!

5
1

T1
1 aC (1)

with T1 the relaxation time of tissue in the absence of tracer
and a the tissue- and frequency-dependent relaxivity. The
signal intensity after the tracer has arrived obeys the fol-
lowing proportionality:

s~ x, y, z!}~1 2 eTR/T1~c!! (2)

with TR being the repetition time. For small variations in
T1(c), this exponential function can be approximated by a
linear equation as a function of tracer concentration

s~ x, y, z! 5 s0~ x, y, z! 1 bC (3)

with s0( x, y, z) the signal intensity in the absence of tracer.
For a model with one compartment and secretion via the

kidneys, the concentration of tracer in blood,Cb, as a
function of timet after the injection of a bolus, is charac-
terized by the differential equation [11,12]

dCb

dt
5 2

k2

Vb
Cb

(4)

Cb~t! 5 e2~k2/Vb!t

with k2 being the half-life of the bolus until renal secretion
(thin curve in Fig. 2) andVb the volume of blood plasma.
When the exchange of tracer between the plasma compart-
ment and the extracellular space is taken into account, the
flow from the plasma to the extracellular space and the
kidneys is captured by the differential equation [7]:

dCb

dt
5 2

k1

Vb
~Cb 2 Ce! 2

k2

Vb
Cb (5)

with k1 the transfer rate from the blood to the extracellular
space andCe the concentration of tracer in the extracellular
compartment. The concentration of tracer in the extracellu-
lar compartment is given by:

dCe

dt
5

k1

Ve
~Cb 2 Ce! (6)

with k1 the transfer rate from the blood to the extracellular
space. The solution to these differential equations is derived
in appendix A, and can for the blood compartment be
described as follows:

Fig. 1. This compartmental diagram indicates the exchange of blood
(tracer) between the blood and extracellular compartment located in the
tumor. The bolus with tracer is injected into the blood plasma. Thereafter,
the differences in tracer concentration between the blood and extracellular
compartments determine the net flow of tracer between the two compart-
ments. For simplicity, secretion to the kidneys has been omitted.

Fig. 2. The thin curve depicts the concentration of tracer as a function of time in the one-compartment model (solely wash-out). The dotted curve indicates
the concentration of tracer according to the two-compartment model based on a global arrival time of tracer,Cb(0) 5 0 (arrival time). The bold curve depicts
the concentration of tracer for the novel two-compartment model with a local (estimated) arrival timet0 $ 0.
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Cb~t! > D
Ve

Vb~Vb 1 Ve!
expS2

k1~Vb 1 Ve!

VbVe
tD 1 h (7)

with D the dose of the bolus,h a constant andVe the volume
of the extracellular water. Such an exponential function is a
proper characterization of the concentrationCb as a function
of time under the assumption of an instantaneous arrival of
the bolus [13].

The solution to the differential equation (6), which is
derived in Appendix B, yields

Ce~t! > a~e2m2t 2 e2m1t! (8)

with m1 and m2 the wash-in and wash-out rates, respec-
tively, defined as yields

m1 5 2
k

ve
(9)

m2 5
k1~Vp 1 Ve!

VbVe

with ve the fraction of heavily vascularized tissue.
We will now extend the pharmacokinetic model to cope

with the local arrival time of the tracert0. Implicit estima-
tion of the arrival time of tracer has previously been in-
cluded in pharmacokinetic models that were developed for
analysis of measurements of the cerebral blood flow in PET
images. Meyer extended a perfusion model with a delay
correction using the factorDt [14]. In Meyer’s approach,
the local arrival time is modeled by a convolution of the
concentration function by an exponential term. We are not
interested in modeling the arrival time as a dispersion of the
bolus over time. Instead, we consider the local arrival time
as a translation of the pharmacokinetic curve along the time
axis. In the simple case where the infusion of contrast tracer
occurs instantaneously, the arrival of tracer can be modeled
by a local Dirac pulse and the tracer concentration by a step
function, which cannot be differentiated fort 5 t0. We
chose to approximate the step function by

lim
g3`

dC

dt
5 2gC~1 2 C!

(10)

lim
g3`

C~t! 5
1

1 1 e2g~t2t0!

which is differentiable forugu Þ `. Note that the length of
the time interval over which the tracer is administered is not
taken into account. Taking the product between Eq. (8) and
(10) yields

Ce~t! 5
1

1 1 e2g~t2t0!
a~e2m2~t2t0! 2 e2m1~t2t0!! (11)

(bold curve in Fig. 2). The two-compartment model, Eq.
(11), is extended with the (average) signal amplitude before
tracer has arriveds#0( x, y, z) yielding the stochastic model

Ce~t! 5 s#0~ x, y, z! 1
a

1 1 e2g~t2t0!
~e2m2~t2t0! 2 e2m1~t2t0!!

1 «~ x, y, z! (12)

The parameters of the pharmacokinetic model defined in Eq.
(12), s#0( x, y, z), a, t0, m1 and m2, can be estimated for
each voxel (x, y, z) by minimizing the residual error«( x,
y, z). This model will be compared with a pharmacokinetic
model based on aglobal estimation of the arrival timet#0

C9e~t! 5 s0~ x, y, z! 1 a9@e2m92t 2 e2m91 t #

1 «9~ x, y, z!, t $ t#0 (13)

In this pharmacokinetic model, the initial signal intensity
s0( x, y, z) equals the signal intensity at timet9 5 t#0.

2.4. Comparison with a postoperative histologic macroslice

Following surgery, the tumor resection was analyzed
histologically. A so-called macro slice, of which the posi-
tion and orientation corresponded exactly with one of the
dynamic MR-slices, was sectioned as described previously
[15]. This histologic slice indicates which areas contain
remnants of viable tumor as they are characterized by a high
affinity for Hematoxylin (small blue round cell tumor)
which renders an intense pink/blue color (see the dark
‘islands’ in Fig. 3a).

The histologic macroslice was digitized on a high-quality
color scanner (600 dpi). Before it could be used as a refer-
ence, the histologic image needed to be matched spatially
with the appropriate MR section. This registration was per-
formed by delineating structures that were clearly visible in
both the T1-weighted MR images and the histologic slice.
Two geometrically congruent contours specifying either the
silhouette of the bone cortex or large regions with normal
bone marrow were drawn manually, one in the (digitized)
histologic image and the other in the T1-weighted MR
image. The differences in scale, orientation and position
between the contours were computed as specified in Appen-
dix C. Fig. 3 shows the matched contours. The histologic
image was subsequently scaled, rotated and translated to the
correct position.

The areas containing viable tumor in the histologic mac-
roslice were enhanced as follows: The average RGB-inten-
sity vector was computed from the pixels within one rem-
nant with viable tumor,p# ( x, y). Pixels with a color-
spectrum resemblingp# ( x, y) are very likely to belong to an
area with viable tumor. We computed the correlationr ( x,
y) betweenp# ( x, y) and each pixel vectorp( x, y) in the
digitized (RGB) histologic image

r ~ x, y! 5
p# ~ x, y! z p~ x, y!

up# ~ x, y!u z up~ x, y!u
(14)

with u z u the vector norm. The correlation measurer ( x, y)
indicates the similarity between the RGB colors of two
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pixels and is independent of their signal intensity. From Eq.
(14), a gray-level image is composed in which the intensity
of pixel (x, y) equalsr ( x, y). By applying the optimal
threshold on this image, areas with a high density of can-
cerous cells are separated from the remaining tissues and
from bone cortex. This resulted in a (registered) mask in
which the white pixels indicate areas with viable tumor.
Each mask image was verified by an experienced patholo-
gist and the volume of viable tumor was compared with the
estimate obtained from the pathological analysis of the
specimen.

The parametric images were computed for the MR sec-
tion that corresponded with the histologic macroslice. Each
parametric image computed from the dynamic MR images
of the same patient was compared with the corresponding
mask as follows. First, a ROI that demarcated the whole
tumor within the MR slice (timet 5 0) was drawn manu-
ally (note that the choice of ROI is likely to influence the
estimated sensitivity and specificity of our approach). The
parameters of the pharmacokinetic models, Eq. (12) and Eq.
(13), were estimated by nonlinear regression. The moment
of acquisition of the MR image preceding the first MR
image in which the arrival of tracer could be visually iden-
tified, was chosen as the global arrival timet#0 in Eq. (13).
The other parameters in the two pharmacokinetic models
were estimated using the Levenberg–Marquart algorithm
[16], which minimizes the residual errors. This algorithm
switches continuously between a first-order steepest descent
method and a second-order method based on the Hessian
matrix. The Levenberg–Marquart algorithm requires no pa-
rameters to be specified as only the maximal number of
iterations needs to be chosen in advance. Preliminary ex-
periments had indicated that the residual error changed little
after 20–30 iterations, so we decided to terminate the algo-
rithm after 50 iterations. The initial parameter settings of the

pharmacokinetic model were chosen such that they resem-
bled the characteristics of viable tumor. This prevented the
fitting algorithm from ending up in local minima when fitted
on MR signals obtained from viable tumor voxels.

Seven parametric images,wash-in m1( x, y, z) andm91( x,
y, z), amplitude a( x, y, z) anda9( x, y, z), wash-out m2( x,
y, z) and m92( x, y, z), and local arrival time t0( x, y, z),
were composed. All the parametric images were postpro-
cessed with a 33 3 median filter to remove outliers. The
parametric images computed from the pharmacokinetic
model Eq. (12) were compared with the parametric images
computed from the model based on a global arrival time of
the contrast, Eq. (13).

2.5. Statistical analysis

For each patient, the classification (thresholding) of each
voxel in the wash-in parametric image (viable or nonviable
tumor) was compared with the correct labeling as specified
by the mask that was derived from the corresponding his-
tologic macroslice. The segmentation result was assessed
with the following quality measures: overall correctnessr,
class-conditional correctness given the true classr(viable)
andr(rest tumor) as well as the quality measure kappa (k).
Given a 23 2 contingency tableQ

Classified as Mask

Viable Rest
tumor

Total

Viable q1,1 q1,2 q1,•

Rest tumor q2,1 q2,2 q2,•

Total q•,1 q•,2 q•,•

the quality measures are defined as follows:

Fig. 3. A (white) contour has been drawn around bone cortex in the digitized histologic macroslice (a). The T1-weighted MR image (b) contains the
corresponding, manually drawn contour. (c) shows the match of the two contours computed as specified in Appendix C.
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correctness

r 5
q1,1 1 q2,2

q•,•
(15)

class-conditional correctnessviable tumor(sensitivity)

r~viable! 5
q1,1

q•,1
(16)

class-conditional correctnessrest tumor(specificity)

r~rest tumor! 5
q2,2

q•,2
(17)

and the inter-observer measure kappa

k 5
r 2 l

1 2 l
(18)

with

l 5
q1,• 3 q•,1 1 q2,• 3 qz,2

q•,•
2 (19)

These quality measures were thoroughly discussed earlier
[17] and their confidence intervals were given.

For each patient, the kappa-correspondence between the
mask image (indicating voxels located in remnants with

viable tumor) and each of the two wash-in parametric im-
ages,m1( x, y, z) and m91( x, y, z), was computed for
different values of a thresholdu. All voxels in the wash-in
image (within the defined ROI) with an intensity larger than
this threshold,m1( x, y, z) . u or m91( x, y, z) . u9, were
considered viable tumor, the other voxels within the ROI as
nonviable tumor. The threshold value that resulted in the
highest agreement (maximalk) indicated the classification
result which was used to compute the other quality mea-
sures:r, r(viable) andr(rest tumor).

3. Results

For seven patients, bone cortex was used to match the
MR and histologic images whereas for one patient the
borders between the (intraosseous) tumor and the healthy
tissue were used for matching. The difference in scale be-
tween the MR and digitized histologic images varied be-
tween 4 and 10.5.

For each patient, parametric images were computed from
the dynamic MR images of the appropriate slice. Fig. 4a
shows an MR image before the contrast tracer has been
administered, Fig. 4b shortly after the arrival of the bolus
and Fig. 4c approximately 10 s after the arrival of the tracer
in the chosen MR section. Fig. 4e–h show the four para-

Fig. 4. (a) T1-weighted dynamic MR image before the arrival of tracer, (b) when the tracer has just arrived and (c) 10 s after the arrival of tracer. (d) shows
the histologic macroslice, which is rotated such that its orientation matches that of the MR section. (e–h) show the parametric images: (e) maximal
enhancement, (f) wash-in, (g) wash-out and (h) local arrival time. The (dark) remnants of viable tumor in the histologic macroslice (d) can be locatedin the
wash-in parametric image (f).
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metric images resulting from fitting using Eq. (12) to the
signal obtained from each voxel. Note the correspondence
between the dark ‘islands’ in the histologic macroslice (Fig.
4d) and the marked bright structures in the wash-in para-
metric image (Fig. 4f).

The results from computing the correctness and kappa-
statistic per patient (within the defined ROI) are presented in
Table 2 (Eq. (12)) and Table 3 (Eq. (13)). With respect to
correctness, both pharmacokinetic models resulted in a sim-
ilar performance for three patients whereas for five patients
a higher correctness was obtained with the novel pharma-
cokinetic model based on a local arrival time of tracer.
Consequently, the novel pharmacokinetic model classifies
more or, in the worst case, as many voxels correctly as the
model based on a global arrival time. So the novel model
gives the most precise estimate of the volume of viable
tumor. For two patients, the novel pharmacokinetic model

resulted in a higher kappa-statistic than the model based on
a global arrival time, while for four patients it resulted in
lower kappa values. The reason why the novel pharmaco-
kinetic model does not improve the diagnostic accuracy
compared with the existing model is the presence of mea-
surement noise. This is discussed in the subsequent section.

Fig. 5 shows the relation with the average size of an
‘island’ with viable tumor in the mask image and the kappa
value resulting from segmenting the associated parametric
image. Clearly, the larger the remnants, the better the cor-
respondence between the wash-in imagem91( x, y, z) and the
histologic mask. The parametric images indicating maximal
enhancement,a( x, y, z), make a distinction possible be-
tween the areas with tumor (viable and nonviable tumor)
and healthy tissue. Fig. 4e shows the maximal enhancement
parametric image of a patient.

4. Discussion

We computed parametric images using the pharmacoki-
netic models based on a local and a global arrival time of
tracer, respectively. Comparison with the matched histo-
logic macroslice indicated that the wash-in parametric im-
ages are suited for identifying remnants of viable postche-
motherapy tumor in patients with Ewing’s sarcoma. The
blood flow in the highly permeable (leaking) capillaries is
high in viable tumor tissue whereas in the remaining parts of
the postchemotherapy tumor, the blood supply is often less
than in normal (musculoskeletal) tissue. Consequently, a
high wash-in rate is to be expected for viable tumor tissue.

The pharmacokinetic model with local arrival time, Eq.
(12), can in a certain way be seen as a simplification of the
two-compartment model proposed by Hoffmann et al. [11].
Their model is henceforward called the infusion model
because it models the injection of the bolus as a block signal.
The fact that the injection of tracer is modeled this way, has
the consequence that the infusion model is not differentiable
in the pointt 5 t. Since the Levenberg–Marquart method
used for fitting the pharmacokinetic parameters entails an
evaluation of all partial derivatives, the fitting procedure
might oscillate. Another and more apparent disadvantage of
pharmacokinetic models based on a manually specified
global arrival time is that different users may disagree with
respect to their choice oft#0, the global arrival time, such
that estimates of the wash-in rate and maximal enhancement
become subject to inter-observer variation. In our novel
pharmacokinetic model Eq. (12), the arrival time is esti-
mated as an endogenous parameter which reduces the re-
quired user interaction to drawing the region of interest.

The parameter estimates oft0 varied within 610 sec
within a typical region of interest. In thet0 parametric
image computed with the novel model (Fig. 4h), it appears
that the local tracer arrival time in a voxel located in non-
viable tumor tissue (slow wash-in rate) precedes the arrival
time in a voxel located within viable tumor (high wash-in

Table 2
Kappa and class-conditional correctness of viable and rest tumor for
local time of tracer

Patient Kappa Corectness C.c. correctness

Viable
tumor

Rest
tumor

1 0.38 0.80 0.60 0.84
2 0.06 0.61 0.63 0.61
3 0.10 0.81 0.55 0.81
4 0.38 0.79 0.43 0.91
5 0.20 0.98 0.22 0.99
6 0.21 0.93 0.45 0.94
7 – 0.98 – 0.98
8 – 1.00 – 1.00

The correspondence between the wash-in parametric image computed
with the novel pharmacokinetic model (local arrival time of tracer) and the
histologic macroslice. In two patients, no macroscopic remnants remained
in the histologic macroslice so that the kappa and class-conditional (C.c.)
correctness of viable tumor could not be computed.

Table 3
Kappa and class-conditional correctness of viable and rest tumor for
global time of tracer

Patient Kappa Correctness C.c. correctness

Viable
tumor

Rest
tumor

1 0.41 0.80 0.66 0.83
2 0.08 0.59 0.77 0.58
3 0.15 0.81 0.71 0.81
4 0.41 0.77 0.58 0.83
5 0.07 0.92 0.33 0.93
6 0.10 0.85 0.50 0.86
7 – 0.98 – 0.98
8 – 0.99 – 0.99

The correspondence between the wash-in parametric image computed
with the pharmacokinetic model based on a global arrival time of tracer and
the histologic macroslice. In two patients, no macroscopic remnants re-
mained in the histologic macroslice so that the kappa and class-conditional
correctness of viable tumor could not be computed.
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rate). This problem is caused by the fact that the Levenberg
Marquart algorithm occasionally ends up in a local mini-
mum when fitting the pharmacokinetic model Eq. (12) to an
MR signal associated with nonviable tumor. Simulations
have shown that the confidence of the parametert0 depends
on the value of the wash-in parameter (slope) in Eq. (12). A
higher wash-in ratem1 implies a better confidence of the
estimatedt0 parameter. How to minimize the risk of ending
up in local minima resulting in biased parameter estimates,
is a subject of future research.

The wash-in parameters estimated with the novel phar-
macokinetic model,m1( x, y, z), fit the data better (resulting
in a lower residual variance) than the wash-in parameters
estimated with the model based on a global arrival time. As
the wash-in rate is mainly determined by 3–5 subsequent
observations (t0 to t0 1 10 seconds), the estimated wash-in
rate is also more sensitive to noise. The main difference
between the two pharmacokinetic models we used is that the
local arrival time in Eq. (12) makes it possible to displace
the nonlinear function along the time-axis (Fig. 1). This
displacement results in a better fit of the up-slope viz. the
wash-in rate. The pharmacokinetic model based on a global
arrival time is less sensitive to changes in the slope associ-
ated with the wash-in rate, a fact that is confirmed by a
smaller variance among the wash-in parameters,m91, com-
puted from Eq. (13)—global arrival time—than among the
parameters,m1, computed from Eq. (12). On the one hand,
when the signal to noise ratio is good, a pharmacokinetic
model is desired that is highly sensitive to the three to four
observations that determine the wash-in coefficient. How-

ever, a more exact parameter fit increases the propagation of
noise in the parameters. The noise level can be so high in the
dynamic MR signal that a more rigid pharmacokinetic func-
tion is desired so the pharmacokinetic model with a global
arrival time should be applied. When pharmacokinetic mod-
eling is applied on the average signal intensity within a ROI,
our novel pharmacokinetic model based on a local arrival
time should certainly be preferred.

When estimating the parameters of the pharmacokinetic
model with a global arrival time, Eq. (13), observations before
the global arrival timet#0 are removed. As the amplitude of the
first observation (t 5 t#0) is chosen as zero, an inappropriate
choice of the arrival time will lead to biased estimates of the
maximal enhancementa9 and possibly also of the wash-in
rate m91. Only the pharmacokinetic model with a local
arrival time gives an unbiased estimate of the maximal
enhancementa because no observations are abandoned.

Our experiments indicate that the pharmacokinetic pa-
rameter maximal enhancement,a, can be used to discern the
tumor from the surrounding (healthy) tissue. Other perfu-
sion studies have indicated that the relative enhancement of
the T1-weighted MR signal computed by a subtraction tech-
nique could not discriminate tumor from inflammatory tis-
sue [18]. Animal experiments have shown that the signal
increase in necrotic areas can be neglected [19]. Lyng et al.
point out that the maximal enhancement of tissue depends
on the fraction of heavily vascularized tissue in the extra-
cellular spaceve [20], which is also evident from our phar-
macokinetic model Eq. (B.6). However, we agree with Lyng
et al. that the maximal signal enhancement is useful for a

Fig. 5. The correspondence between the wash-in parameter and the location of viable tumor improves with the resolution in the MR images. The figure is
based on the wash-in parameters computed with the pharmacokinetic model based on a global arrival time.
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comparison between tumors in situations where no absolute
measure of perfusion is required.

In the present study, pharmacokinetic parameters esti-
mated from preoperative dynamic MR images were com-
pared with a histologic specimen obtained from subsequent
surgery. By applying a thresholdu on the wash-in image, a
classification of voxels into viable and nonviable tumor is
obtained. Analyses of different patients indicate that the
typical wash-in ratem1 associated with viable tumor varies
among the patients in our study. From the derivation of the
pharmacokinetic model for the extracellular compartment, it
is clear thatm1 is proportional to the product of the perme-
ability P and the surface area per unit mass of tissueS, [see
Eq. (B.1) in appendix B]. These two factors depend on the
vascular properties of the local tissue, so we do not expect
that one thresholdu value exists, which is optimal for all
patients. It would be possible to obtain transversal histo-
logic and MR sections (with a clearly visible artery) and
compare the enhancement-signal of the voxels in the artery
with the MR signal obtained from the voxels located in the
tumor. However, such an approach would only allow com-
pensation for varying bolus input functions, whereas the
local permeability also is subject to inter- and intra-patient
variation (intramedullar versus extramedullar tissue). A ma-
jor disadvantage of a transversal orientation is that many
more pathologic sections will be required to give a reliable
estimate of the response to preoperative chemotherapy. Op-
timizing the thresholding procedure for successive MR ex-
aminations of the same patient during chemotherapy, is a
subject of future research.

The wash-in parametric images are computed from an
MR image sequence with a slice thickness of 8 mm,
whereas the histologic specimen is 5mm thin. It is clear that
remnants with a diameter smaller than 8 mm do not occupy
the whole MR slice, which results in partial volume effects.
Consequently, remnants with a much larger diameter should
show a better correspondence with histology than remnants
with a diameter smaller than 8–12 mm. A scatter plot
confirms such a relation between an increasing average size
of an ‘island’ of viable tumor (cluster of 4-connected voxels
in the binary mask image) and a higher kappa value.

In our study, the chosen ROI influences the results of our
analysis. Whereas the remnants with viable tumor, in gen-
eral, occur inside the ROI, the size of the ROI influences the
number of voxels considered as nonviable tumor. Conse-
quently, the estimated specificityr(nonviable) and the over-
all quality measures,k andr, depend on the demarcation of
the ROI. The sensitivityr(viable) depends to a much lesser
extent on how the ROI is drawn. In the nearby future, we
will investigate the intra- and interobserver variability of the
area of viable tumor as depending on the specified ROI.

5. Conclusion

In this article, we have shown that areas with viable
tumor can be discerned from areas with nonviable tumor by

analyzing T1-weighted dynamic contrast-enhanced MR im-
ages with a novel two-compartment pharmacokinetic
model. As a result, the relative volume of viable tumor in
patients with Ewing’s sarcoma can be estimated during and
after chemotherapy from the dynamic MR images. Com-
pared with subtraction techniques, pharmacokinetic model-
ing has the advantage that the fitted parameters capture the
dynamics of the perfusion process. Moreover, instead of
fitting the pharmacokinetic parameters to the average inten-
sity of a ROI, the parametric images give the highest pos-
sible spatial resolution. Comparison with a well-defined
gold standard obtained from histology indicates a direct
relation between a high wash-in rate and the presence of
viable tumor. The larger the remnants the better the corre-
spondence between viable tumor and wash-in rate.

The only difference between the pharmacokinetic mod-
els based on a global and a local (endogenous) arrival time
is the extra parametert0 in the latter model. Consequently,
the extended model is capable of better fitting the wash-in
rate and maximal enhancement than a pharmacokinetic
model based on a global arrival time. In general, the lower
the noise level is in the dynamic MR signal, the more
relevant it becomes to estimate the wash-in rate accurately.
When, on the other hand, the noise level is relatively high a
model based on a global arrival time smoothes the wash-in
parameter estimates which in return become less sensitive to
this noise. In our experiments with postchemotherapy Ew-
ing’s sarcoma, the novel pharmacokinetic model based on a
local arrival time of tracer gave the best estimates of the
number of voxels located within remnants with viable tu-
mor. Finally, our novel pharmacokinetic model should be
preferred when pharmacokinetic modeling is applied on the
average signal intensity within a ROI where the noise has
much less effect.
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Appendix A

The pharmacokinetic model for the blood compartment
can be derived by writing Eq. (5) as

Ce 5
Vb

k1

dCb

dt
1

k2

k1
Cb 1 Cb (A.1)

Substituting it forCe in Eq. (6) yields the second order
differential equation [7]
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VeVb

d2Cb

dt2
1 ~Vek2 1 Vek1 1 Vb k1!

dCb

dt
1 k1k2Cb 5 0

(A.2)

(the polynomialQy0 1 Ry9 1 U 5 0), with the solution

Cb~t! 5 Ae2m2t 1 Be2m3t (A.3)

The roots to Eq. (A.3) are incomprehensible but taking into
account thatk1 .. k2 [7], the solutions form2 and m3

become

m2 5
k1~Vb 1 Ve!

VbVe
(A.4)

m3 5
k2

2Vb

The coefficientsA and B can be determined when the
constraintsCb(0) 5 A 1 B 5 D/Vb and Cb(`) 5 B 5
D(Vb1Ve) (for k2 5 0, i.e., no secretion by the kidneys)
are taken into account (D is the dose of tracer). The con-
straints form two linear equations with the two variablesA
andB. The solution is

A 5 D
Ve

Vb~Vb 1 Ve!
(A.5)

B 5 D
1

Vb 1 Ve

The pharmacokinetic model for the blood compartment be-
comes

Cb~t! 5 DS Ve

Vb~Vb 1 Ve!
expS2

k1~Vb 1 Ve!

VbVe
tD

1
1

Vb 1 Ve
expS2

k2

2Vb
tDD (A.6)

As the secretion by the kidneys is slow compared with the
exchange of tracer between the plasma and extracellular
compartments,k1 .. k2, Eq. (A.6) can be approximated by

Cb~t! > DS Ve

Vb~Vb 1 Ve!
expS2

k1~Vb 1 Ve!

VbVe
tD

1
1

Vb 1 Ve
D (A.7)

Appendix B

The approximation toCb(t) simplifies the derivation of
the concentration function for the extracellular compart-
ment. The concentration of tracer in this compartment is
given by the differential equation [7]

dCe

dt
5

PS

Veve
~Cb 2 Ce! 5

k

ve
~Cb 2 Ce! (B.1)

with, 0 # ve # 1, the fraction of heavily vascularized tissue
and Ve the volume of the extracellular water.P is the
permeability coefficient andS the surface area of the leak-
ing capillaries. Combining Eq. (A.7) and (B.1) yields

dCe

dt
1

k

ve
Ce 5

k

ve
DS Ve

Vb~Vb 1 Ve!
expS2

k1~Vb 1 Ve!

VbVe
tD

1
1

Vb 1 Ve
D (B.2)

which is a first order differential equation (y9 1 Qy 5 R).
The general solution is given by [21]

y 5 e2*QdtFE Re*Qdt dt 1 Fe2*QdtG (B.3)

which yields

Ce~t! 5 e2* ~k/ve! dt

z FE Fk

ve
DS Ve

Vb~Vb 1 Ve!
expS2

k1~Vb 1 Ve!

VbVe
tD

1
1

Vb 1 Ve
DGe* ~k/ve! dt dt 1 Fe2*~k/ve! dtG (B.4)

The solution to Eq. (B.4) is

Ce~t! 5 e2~k/ve!t

z FE F k

ve
DS Ve

Vb~Vb 1 Ve!
expS2

k1~Vb 1 Ve!

VbVe
tD

1
1

Vb 1 Ve
DGe~k/ve!t dt 1 Fe2~k/ve!tG (B.5)

Eq. (B.5) simplifies to

Ce~t! 5

D1 1

Vb 1 Ve
2

k

ve

Ve

Vb~Vb 1 Ve!Sk1

Vb 1 Ve

VbVe
2

k

ve
D

expS2
k1~Vb 1 Ve!

VbVe
tD2 1 Fe22~k/ve!t (B.6)

As Ce(0) 5 0,

F 5 2D1 1

Vb 1 Ve
2

k

ve

Ve

Vb~Vb 1 Ve!Sk1

Vb 1 Ve

VbVe
2

k

ve
D2

(B.7)

Eq. (B.6) can be simplified into the approximate model
[7,22]

Ce~t! > a~e2m2t 2 e2m1t! (B.8)
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with a an amplitude factor andm1 5 2k/ve.

Appendix C

In this appendix, we derive the formulas for registering
the corresponding contours drawn in the MR and histologic
images. Solely the three degrees of freedom: position, ori-
entation and scale, are taken into account whereas foreshort-
ening is not included. Define the contour drawn in the MR
image by the ordered set of coordinates

CMR 5 $~ x1MR
, y1MR

!, . . . , ~ xrMR
, yrMR

!% (C.1)

and the congruent contour in the histologic image by the set

CHI 5 $~ x1HI
, y1HI

!, . . . , ~ xvHI
, yvHI

!% (C.2)

Define further the two (symmetric) covariance matrices

¥MR 5 S sxMR

2 cov~ xMR, yMR!
cov~ xMR, yMR! syMR

2 D
¥HI 5 S sxHI

2 cov~ xHI, yHI!
cov~ xHI, yHI! syHI

2 D (C.3)

The centers of gravity of the two contours are given by

Sx0MR

y0MR
D 5

1

r SOj xjMR

O
j

yjMR
D Sx0HI

y0HI
D 5

1

v SOj xjHI

O
j

yjHI
D (C.4)

and the translation vector by

Dp 5 SDx0

Dy0
D 5 Sx0MR

y0MR

D 2 Sx0HI

y0HI

D (C.5)

Define the eigenvalues and eigenvectors of the covariance
matrices

¥MR 5 EMR
T LMREMR ¥HI 5 EHI

T LHIEHI (C.6)

The difference in rotation angle is then

Da 5 arccos~e1,1MR
! 2 arccos~e1,1HI

!

5 arcsin~e1,2MR
! 2 arcsin~e1,2HI

! (C.7)

and the difference in scale

DS5 Î1

2 Sl1MR

l1HI

1
l2MR

l2HI

D (C.8)

where it is assumed that the eigenvaluesl1 $ l2 for both
contours. The three parametersDp, Da andDS specify the
transformation of the histologic mask such that it coincides
with the MR image.
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